Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 190, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653740

RESUMEN

Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.

2.
Asian Pac J Cancer Prev ; 15(15): 6161-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25124591

RESUMEN

BACKGROUND: We have reported the radiation could activate STAT3, which subsequently promotes the invasion of A549 cells. We here explored the dose- and time-response of STAT3 to radiation and the effect of radiation on upstream signaling molecules. MATERIALS AND METHODS: A549 cells were irradiated with different doses of γ-rays. The expression of and nucleus translocation of p-STAT3 in A549 cells were detected by immunoblotting and immunofluorescence, respectively. The level of phosphorylated EGFR was also assessed by immunoblotting, and IL-6 expression was detected by real time PCR and ELISA. RESULTS: Radiation promoted the phosphorylation of STAT3 at Y705 in a dose- and time-dependent manner and nuclear translocation. The level of phosphorylated EGFR in A549 cells increased after radiation. In additional, the mRNA and protein levels of IL-6 in A549 cells were also up regulated by radiation. CONCLUSIONS: STAT3 is activated by radiation in a dose-and time-dependent manner, probably due to radiation-induced activation of EGFR or secretion of IL-6 in A549 cells.


Asunto(s)
Proliferación Celular/efectos de la radiación , Radioisótopos de Cobalto , Rayos gamma , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias Pulmonares/radioterapia , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de la radiación , Western Blotting , Técnica del Anticuerpo Fluorescente , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosforilación/efectos de la radiación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Células Tumorales Cultivadas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...